Linear dynamic filtering with noisy input and output 1 Ivan Markovsky and Bart

نویسندگان

  • Ivan Markovsky
  • Bart De Moor
چکیده

Estimation problems for linear time-invariant systems with noisy input and output are considered. The smoothing problem is a least norm problem. An efficient algorithm using a Riccati-type recursion is derived. The equivalence between the optimal filter and an appropriately modified Kalman filter is established. The optimal estimate of the input signal is derived from the optimal state estimate. The result shows that the noisy input/output filtering problem is not fundamentally different from the classical Kalman filtering problem. Linear dynamic filtering with noisy input and output Ivan Markovsky†and Bart De Moor ESAT, SCD-SISTA, K.U.Leuven, Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium {Ivan.Markovsky, Bart.DeMoor}@esat.kuleuven.ac.be http://www.esat.kuleuven.ac.be/sista-cosic-docarch Tel: +32–16–32 17 09 Fax: +32–16–32 19 70 February 25, 2004 Abstract State estimation problems for linear time-invariant systems with noisy inputs and outputs are considered. An efficient recursive algorithm for the smoothing problem is derived. The equivalence between the optimal filter and an appropriately modified Kalman filter is established. The optimal estimate of the input signal is derived from the optimal state estimate. The result shows that the noisy input/output filtering problem is not fundamentally different from the classical Kalman filtering problem.State estimation problems for linear time-invariant systems with noisy inputs and outputs are considered. An efficient recursive algorithm for the smoothing problem is derived. The equivalence between the optimal filter and an appropriately modified Kalman filter is established. The optimal estimate of the input signal is derived from the optimal state estimate. The result shows that the noisy input/output filtering problem is not fundamentally different from the classical Kalman filtering problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear dynamic filtering with noisy input and output 1

We establish the equivalence between the optimal least-squares state estimator for a linear time-invariant dynamic system with noise corrupted input and output, and an appropriately modified Kalman filter. The approach used is algebraic and the result shows that the noisy input/output filtering problem is not fundamentally different from the classical Kalman filtering problem. The result is ill...

متن کامل

Linear dynamic filtering with noisy input and output

State estimation problems for linear time-invariant systems with noisy inputs and outputs are considered. An efficient recursive algorithm for the smoothing problem is presented. The equivalence between the optimal filter and an appropriately modified Kalman filter is established. The optimal estimate of the input signal is derived from the optimal state estimate. The result shows that the nois...

متن کامل

Continuous-time Errors-in-variables Filtering

We consider estimation problems for a continuous-time linear system with a state disturbance and additive errors on the input and the output. The problem formulation and the estimation principle are deterministic. The derived filter is identical to the stochastic Kalman filter. The problem formulation with additive error on both the input and the output, however, is more symmetric then the clas...

متن کامل

Multi-Model System Parameter Estimation

We pose a multi-model system parameter estimation problem. A multi-model system is a linearly parameterized system H(z, p) = ∑np i=1 piHi(z). The parameter estimation problem is: given the set of systems {Hi(z)} np i=1, describing the multi-model system, find a causal system that assumes as an input the input/output signals of the multi-model system and produces as an output the parameter estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003